Solvability of Discrete Neumann Boundary Value Problems

نویسندگان

  • D. R. Anderson
  • C. C. Tisdell
چکیده

In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer’s theorem in the finitedimensional space setting. Running Head: Discrete BVPs AMS Subject Code: 39A12, 34B15 Corresponding Author: C C Tisdell

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvability of discrete Neumann boundary value problems

In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer’s Theorem in the finite-dimensional space setting. © 2006 Elsevier Inc. All rights reserved.

متن کامل

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

Dynamic Systems and Applications 18 (2009) 265-274 POSITIVE SOLUTIONS FOR DISCRETE BOUNDARY VALUE PROBLEMS

Discrete boundary value problems have been discussed extensively in the literature; see, for example, Agarwal et al. [1], Anderson et al. [5], and Avery et al. [6], as well as the references cited therein. In [1], the authors use critical point theory to establish the existence of multiple solutions of some regular as well as singular discrete boundary value problems. Solvability of a nonlinear...

متن کامل

Solvability of Fractional Analogues of the Neumann Problem for a Nonhomogeneous Biharmonic Equation

In this article we study the solvability of some boundary value problems for inhomogenous biharmobic equations. As a boundary operator we consider the differentiation operator of fractional order in the Miller-Ross sense. This problem is a generalization of the well known Neumann problems.

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006